Deployment Pipeline Patterns | CONFIDENTIAL

DEPLOYMENT PIPELINE
PATTERNS

CI/CD • Fabric Pipelines • Azure DevOps • Automation

Version 1.0 | January 2026

Table of Contents

1. Deployment Overview
Deployment pipelines enable controlled promotion of Fabric items across environments, supporting continuous delivery and reducing deployment risks.
1.1 Deployment Options
	Option
	Description
	Best For

	Fabric Pipelines
	Native deployment between workspaces
	Simple deployments

	Git + Azure DevOps
	CI/CD with Git integration
	Complex workflows

	REST APIs
	Programmatic deployment
	Custom automation

1.2 Environment Strategy
Environment Flow:

 Development → Test/QA → UAT → Production
 │ │ │ │
 ▼ ▼ ▼ ▼
 dev-ws test-ws uat-ws prod-ws

Deployment Rules:
 - Dev → Test: Automated on merge to develop
 - Test → UAT: Manual approval required
 - UAT → Prod: Change advisory board approval

2. Fabric Deployment Pipelines
2.1 Pipeline Setup
1. Create deployment pipeline in Fabric
1. Assign workspaces to stages
1. Configure deployment rules
1. Set up approval gates
1. Define parameter rules for environment differences
2.2 Pipeline Stages
	Stage
	Workspace
	Purpose

	Development
	claims-dev-ws
	Active development

	Test
	claims-test-ws
	Integration testing

	Production
	claims-prod-ws
	Live environment

2.3 Deployment Rules
1. Data sources: Map dev connections to prod
1. Parameters: Override environment-specific values
1. Capacity: Assign to appropriate capacity
1. Permissions: Maintain across deployment
2.4 Parameter Rules Example
Parameter Mapping:

 Parameter: DatabaseServer
 Development: dev-sql-server.database.windows.net
 Test: test-sql-server.database.windows.net
 Production: prod-sql-server.database.windows.net

 Parameter: StorageAccount
 Development: devstorageaccount
 Test: teststorageaccount
 Production: prodstorageaccount

3. Azure DevOps CI/CD
3.1 Pipeline Architecture
Azure DevOps Pipeline Flow:

 Git Push → Build Pipeline → Release Pipeline
 │ │ │
 ▼ ▼ ▼
 Trigger Validate Deploy to
 + Package Fabric WS

Stages:
 1. Build: Validate, test, package
 2. Dev: Auto-deploy to development
 3. Test: Deploy with approval
 4. Prod: Deploy with CAB approval
3.2 Build Pipeline (YAML)
azure-pipelines-build.yml
trigger:
 branches:
 include:
 - main
 - develop

stages:
- stage: Build
 jobs:
 - job: Validate
 steps:
 - script: |
 echo 'Validating Fabric items...'
 # Run validation scripts
 - task: PublishPipelineArtifact@1
 inputs:
 targetPath: '$(Build.SourcesDirectory)'
 artifact: 'fabric-items'

4. REST API Deployment
4.1 API-Based Deployment
PowerShell: Deploy using Fabric REST API

$token = Get-AzAccessToken -ResourceUrl 'https://api.fabric.microsoft.com'

$headers = @{
 'Authorization' = "Bearer $($token.Token)"
 'Content-Type' = 'application/json'
}

Trigger deployment pipeline
$body = @{
 sourceStageOrder = 0 # Development
 isBackwardDeployment = $false
} | ConvertTo-Json

Invoke-RestMethod `
 -Uri "https://api.fabric.microsoft.com/v1/deploymentPipelines/$pipelineId/deploy" `
 -Method POST `
 -Headers $headers `
 -Body $body
4.2 Item Export/Import
Export semantic model definition
$exportResponse = Invoke-RestMethod `
 -Uri "https://api.fabric.microsoft.com/v1/workspaces/$wsId/semanticModels/$modelId/getDefinition" `
 -Method POST `
 -Headers $headers

Import to target workspace
Invoke-RestMethod `
 -Uri "https://api.fabric.microsoft.com/v1/workspaces/$targetWsId/semanticModels" `
 -Method POST `
 -Headers $headers `
 -Body ($exportResponse | ConvertTo-Json -Depth 10)

5. Approval Workflows
5.1 Approval Gates
	Environment
	Approval
	Approvers

	Dev → Test
	Automatic or lead approval
	Tech Lead

	Test → UAT
	QA sign-off required
	QA Manager

	UAT → Prod
	CAB approval + change ticket
	Change Advisory Board

5.2 Pre-Deployment Checklist
1. ☐ All tests passed in source environment
1. ☐ Code review completed and approved
1. ☐ Documentation updated
1. ☐ Rollback plan documented
1. ☐ Stakeholders notified
1. ☐ Change ticket created (for production)

6. Best Practices
6.1 Deployment Guidelines
1. Never deploy directly to production
1. Test all changes in lower environments
1. Use parameterization for environment differences
1. Maintain deployment logs
1. Have rollback procedures ready
1. Deploy during low-usage windows
6.2 Automation Guidelines
1. Automate repetitive deployment tasks
1. Version control all pipeline definitions
1. Use service principals for automation
1. Implement proper error handling
1. Monitor deployment health
6.3 Common Patterns
	Pattern
	Use Case

	Blue-Green
	Zero-downtime deployments

	Canary
	Gradual rollout to subset of users

	Feature Flags
	Toggle features without deployment

	Hotfix
	Emergency production fixes

Appendix: Document Information
	Document Title
	Deployment Pipeline Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
